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Experimental results are presented for the lifetime in creep rupture of single graphite fibres. 
The fibres were extracted from unsized, Hercules IM6 tows and were tested at a gauge length 
of 5cm under standard ambient conditions (21°C, 50% r.h.). The results were analysed using a 
theoretical model which embodies Weibull distributions for both strength and lifetime, and a 
power-law relationship for lifetime against stress level. Using maximum likelihood techniques, 
the Weibull shape parameter values for strength and lifetime were found to be about 4.6 and 
0.01 5, respectively, and the power-law exponent was about 300, but could be as low as 250. 
As expected, this exponent was close in value to the ratio of the respective Weibull shape 
parameter values. Using the Kaplan-Meier estimator for censored data, the goodness of fit of 
the model to the data was found to be excellent. 

1. I n t r o d u c t i o n  
For over two decades research has been conducted to 
develop lightweight, filamentary composite structures 
which can reliably sustain high tensile loads for long 
time periods. An important material for such appli- 
cations has been graphite or carbon fibres in an epoxy 
matrix, and typical structures include filament-wound 
pressure vessels, composite flywheels, gas centrifuge 
cylinders, rocket motor casings and structural beams. 
These structures are often used in critical aerospace 
and defence applications where failures can have 
disastrous consequences. 

In the above applications the composite is subject to 
the random and catastrophic phenomenon of creep 
rupture (variously called stress rupture, static fatigue, 
creep fatigue and stress-life failure). To establish the 
creep-rupture properties for design purposes, various 
laboratories have resorted to experimentally testing 
large numbers of epoxy-impregnated strands, since 
testing a sufficient number of full-scale structures 
is prohibitively expensive. The hope has been that 
simple scaling laws could be applied to forecast struc- 
tural life from strand results. For example, tests 
have been performed on Union Carbide Thornel 50 
graphite-epoxy strands [1], Torayca T300 carbon- 
epoxy strands [2], Hercules AS4 graphite-epoxy 
strands [3], and Hercules IM6 graphite-epoxy strands 
and NOL rings [4]. Also work was recently carried out 
at Cornelt University on model composites consisting 
of seven Hercules IM6 graphite fibres in an epoxy 
matrix [5]. 

The results of these strand experiments show large 
statistical variations in lifetime for ostensibly identical 
specimens, but more important perhaps is the fact that 

the sensitivity of median lifetime to stress level varies 
widely depending on the composite material system. 
Using the usual power law to relate median lifetime to 
stress level, power-law exponents ranging from 60 to 
120 can be inferred from the data. In fact, similar 
material systems (differing say by lot number) have 
been found to vary by 40% in this key parameter. 
Unfortunately, separate testing has not been carried 
out on the individual fibres and the epoxy matrix so 
that it is not possible to investigate the source of the 
above variation in the strands. This variation is import- 
ant because it introduces considerable uncertainty and 
risk in forecasting structural life and reliability. 

Failure in these composites is generally a complex 
statistical process involving scattered failure of fibres 
at flaw sites, overloading of neighbouring fibres by 
way of stress transfer through the matrix, and the 
growth of clusters of adjacent fibre breaks to a critical 
unstable size. In creep rupture under a steady load, 
failure is further enhanced by a combination of therm- 
ally activated flaw growth and failure in the fibres, 
viscoelastic creep in the matrix near breaks, and pro- 
gressive debonding at the fibre-matrix interface. The 
latter two mechanisms result in a widening pattern of 
overloading on fibres next to existing breaks causing 
additional breaks. The result is sequences of adjacent 
fibre breaks which grow in time and form small clus- 
ters or "cracks", one of which ultimately becomes 
unstable and triggers failure of the composite. 

It is often assumed that the graphite fibres them- 
selves are virtually immune to creep rupture, implying 
that thermally activated flaw growth may be neglected 
as compared to both matrix creep and interface failure 
effects in the composite. Phoenix et al. [5] have 
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developed a model for creep rupture of such com- 
posites based on this assumption. One reason why this 
assumption has not been tested is the huge inherent 
variability which occurs in fibre lifetime. This varia- 
bility necessitates testing large numbers of individual 
fibres, and using sophisticated statistical modelling 
and analysis techniques to interpret the results. Typi- 
cal observations on testing a few graphite fibre speci- 
mens are that they fail on loading or seem to last 
indefinitely. These difficulties have, in fact, dis- 
couraged the generation of creep-rupture data on all 
types of high-strength fibres. 

The main purpose of this paper is to report on 
creep-rupture tests on single graphite fibres and to 
determine statistical and power-law parameters for a 
certain model of fibre lifetime. The model has Weibult 
features for both strength and lifetime, and power-law 
behaviour in relating lifetime in creep rupture to stress 
level. First the use and justification of the fibre model 
is discussed and the experimental techniques are 
described. Then the results of  the various strength 
and lifetime experiments are presented and analysed 
using maximum likelihood techniques. Analyses are 
presented for the individual sets of  data first, and then 
for all the data at once using a full likelihood analysis. 
Lastly, we study the goodness of fit of the model to the 
data using the Kaplan-Meier estimator for censored 
data, and find an excellent fit. 

2. Statistical model for failure of single 
fibres 

2.1. General formulation of the model 
Single fibres are subject to the creep-rupture failure 
process. Under a constant tensile stress, a single fibre 
(e.g. graphite, aramid or glass) though surviving at 
first, may fail after many hours. The failure originates 
at the atomic level. When sufficient thermal energy 
exists in a molecule to overcome certain local energy 
barriers, the molecule may slip relative to other mol- 
ecules or rupture at one of its atomic bonds. As 
molecules slip or rupture, neighbouring molecules 
become overloaded and their failure rates are 
increased. Such molecular failures give rise to growing 
microcracks which eventually break the fibre. More- 
over, the statistical variation in fibre strength and 
lifetime is governed both by random molecular failure 
and by randomly distributed structural imperfections 
or flaws. 

The parametric form of the model was originally 
proposed by Coleman [6] on phenomenological 
grounds, and was justified theoretically by Phoenix 
and co-workers [7-9]. According to the model, the 
distribution function for the failure time tv of a single 
fibre, loaded under the non-negative stress history 
a(t), t ~> 0 is a functional of the form 

(1) 
where to(x), x i> 0 is called the breakdown rule, and 
• (x) is called the shape function. To impart the 
commonly observed Weibull behaviour to a fibre, a 
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Weibull shape function is taken whereby 

= ( 2 )  

where c~ and/3 are positive constants. In keeping with 
the usual size effect, ~ is proportional to fibre length so 
that ~ = %l/lo, where l is the fibre length and ~0 is 
associated with the unit length 10. (Length is not varied 
in the current experiments as it was by Phoenix et al. 
[5].) The breakdown rule ~c is taken as the power law 
breakdown rule, 

 c(x) = ( 3 )  

where -~ and ~ are positive constants. Combining 
Equations 1, 2 and 3 the fibre model reduces to 

F(t;a)  = 1 - exp - e 7  ~ a(u)°du t >i O. 

(4) 
To justify the above model Phoenix [8] considered a 

lattice model for the failure of a single fibre wherein 
the molecules are aligned in parallel and fail randomly 
at bonds due to thermally activated chain scission. 
Adjacent to these failed bonds, neighbouring mol- 
ecules are overloaded according to an elastic stress 
redistribution rule, thus increasing their thermally 
activated failure rate. Failure of the fibre results from 
the lateral growth of  clusters of adjacent broken 
bonds, one of which develops into a catastrophic 
crack. Upon studying the typical shape of the function 
U(~) which is the required thermal energy for chain 
scission as a function of stress level a (a Morse poten- 
tial was used for illustration), Phoenix argued that the 
logarithmic function 

= - i n  ( s )  

where U0 and 60 are adjustable parameters, provides a 
more accurate representation at high molecular stress 
levels than the widely used linear approximation 
U2(a) = U0 - 2a where U0 is the bond energy under 
zero stress (i.e. U(0)), and 2 is the so-called activation 
volume (see also Phoenix and Tierney [7]). He showed 
that Equation 5 leads directly to the power-law break- 
down rule (Equation 3) where the parameters 7 and 
are 

~) = "~O1 ~O ~' (6) 
and 

= (7) 
where z0 is a period of bond vibration, T is the 
absolute temperature and k is Boltzmann's constant. 
For the Morse potential, U0 was found to be about 
0.40U0 and 5o was about 0.950-0, where ~0 is the peak 
bond force as calculated from the potential function. 
Furthermore, Phoenix justified the integral form in 
Equation 1, and showed that the function ~(x) is a 
complex function involving the elastic load-sharing 
constants and previous parameters but with approxi- 
mately a power form as in Equation 2 with e propor- 
tional to the fibre volume. Phoenix and Kuo [9] showed 
that the exponent/~ can be much less than unity in the 
presence of randomly distributed initial defects such 
as chain ends. Later the experimental results are 
considered in this light. 



2.2. Creep  rupture  unde r  c o n s t a n t  s t ress  
For creep-rupture lifetime, consider the constant 
stress history 

al(t) = a t >~ 0 (8) 

where a is a positive constant. The distribution function 
for lifetime (Equation 4) reduces to the Weibull 
distribution 

F(t; at) = 1 - exp [ - ( t / t~)  ~] (9) 

where the scale parameter for lifetime is 

to = ~r ~ / ( ~ ) ~ / ~  (10) 

and the shape parameter is simply ft. 

2.3. Strength under linearly increasing stress 
Next consider a linearly increasing stress history on a 
fibre such that 

a2(t) = Rt  t >~ 0 (11) 

where the constant R is the loading rate. This is the 
stress history that is imposed during a tension test to 
measure the fibre's short-term strength E, which is 
equal to Rtv where tF is the failure time under this 
stress history. The distribution function for 2; is 
denoted as F*(o-) and is equivalent to F(a/R; a2) which 
is easily calculated. The result is that the fibre strength 
follows the Weibull distribution, 

F*(a) = 1 -- exp [--(a/aR) ~] (12) 

where the shape parameter for strength is 

~/ = fl(ff + 1) (13) 

and the scate parameter for strength is 

aR = (c~7~) -t/[B('°+J)] [R(o + 1)] t/(°+° (14) 

The sensitivity of fibre strength to loading rate is 
through the factor R ~/(Q+~ and is very mild because Q 
is usually large. 

2.4. Relation of scale parameters for strength 
and lifetime 

Under the increasing stress history, (Equation 1 l) we 
let tR be the time required for the stress to reach the 
Weibull scale parameter aR in value, that is, 

t R = f f R / R  (15) 

Upon combining Equations 10, 14, and 15the lifetime 
scale parameter is 

t~ - (O + t) (16) 

The Weibull scale parameter for lifetime under con- 
stant stress a may be expressed simply as a power law 
in the stress ratio a/aR, denoted by ~b. 

2.5. Actual experimental loading in creep 
rupture 

In an actual creep-rupture experiment it is not possible 
to apply a constant load instantaneously. Thus, we 
consider a stress history with a loading phase, namely, 

{Rat O < ~ t  < to 
a~(t)  = (17) 

to~< t 

where a is the stress level for the test and R is the 
loading rate over the loading time to = a/R. From 
Equation 4 the distribution function for the failure 
time tF is found to be 

11 - exp [-~l~R°~(~ + 1) ~t ~(°+1)] 
0 ~ < t < t 0  

F(t; a3) = - exp {-e7~a°~[t - toO/(~ + 1)] 8} 

to~< t 

(18) 

It is useful to rewrite Equation 18 in terms of the 
respective Weibull shape and scale parameters for 
strength and lifetime derived earlier, and the stress 
ratio q5 = a/aR. We first note the to = ~btR, and 
using Equations 10 and 14 the distribution function 
becomes 

F(t; a3) 

= { l l - e x p [ - ( t / t R ) " ]  

exp { -  [(t - t ~ ) / t J }  

0 ~< t < qStR 

~btR ~< t 

(19) 

where 
t* = toO/(O + 1) 

= 4)t1~0/(0 + 1) (20) 

being slightly less than to. Note that at longer times 
t >> to, the second expression in Equation 19 reduces 
to Equation 9, the Weibull distribution function for 
lifetime under constant stress a. 

2.6. Failure rate for f ibres 
Because ~ was expected to be very large (>  150) and 
fi was expected to be very small (<  0.03), the fibre 
failure rate was considered in  an effort to determine 
sample sizes and stress levels that would yield as much 
information as possible, that is, as many lifetime 
failures as possible during a reasonable time period. 
For this purpose it was useful to consider the lifetime 
density function 

d 
f ( t ;  a) = dtt F(t; a) (21) 

For the stress history a3(t), this density function is 
obtained from Equation 19 as 

f ( t ;  a3) = 

{ llt~l(t/tR) ~-1 exp [--(t/tR)" ] 0 <~ t < c~t R 

flt2~[(t -- t*)/t~] ~-t exp {--[(t -- t*)/t~] ~} (22) 

q~tR ~< t 

At longer times t >> to the above expression reduces to 
the standard Weibull density 

f ( t ;  a3), ~ flt2t(t/t~) ~-1 exp [--(t / t ,)  ~] ~tR < t 
(23) 

which is the density of Equation 9. 

2.7. Optimal  s t ress  level for an expe r imen t  
In conducting a creep-rupture experiment, it is desir- 
able to have the magnitude of the lifetime density 
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function (Equation 22), for the fibres as high as poss- 
ible between the loading time t o and the censor time tc, 
the time of termination of the experiment. Indeed, 
when the density is large, the increase in probability of 
failure between t o and tc will be large, and failures are 
most likely to be observed. The censor time tc is 
obviously limited by practical considerations. 

In Fig. I the density function Equation 22 is plotted 
against time for the stress ratios q5 --- 0.30, 0.70, 0.925, 
1.00 and 1.05. For this example, a power-law expo- 
nent Q = 250, respective shape and scale parameters 
of 5 and 4000 MPa for strength, and a loading rate of 
120 MPa sec-1 are used. These values are comparable 
to those in the experiments described later. 

Over the time range shown, the density increases as 
the stress level a increases, but the rate of increase falls 
off at q~ near 1.0, that is for stress levels close to the 
value of the Weibull scale parameter for strength. At 
the three highest stress levels the density functions 
appear to be effectively identical soon after loading. 
However, by maximizing the density function Equation 
22 with respect to a and using Equation 16, an exact 
expression for the optimal stress ratio q~t for each time 
point is obtained, 

qS, = [t(O + 1)/tR] -'/° (24) 

For larger times the optimal stress actually drops, but 
very slowly when O is very large. This minor effect is 
barely evident in the upper tails of the plots on Fig. 1. 

2.8. Stepwise lifetime testing 
As discussed later, the tabbing procedure for fibre 
specimens was necessarily tedious and complicated. In 
order to maximize the amount of information from a 
single sample of specimens and minimize the possibility 
of sample-to-sample variations, a stepwise loading 
procedure was used. By this procedure, a sample of 
specimens is subject to the stress history of Equation 
17 at stress level ~r~, and then unloaded after a suitably 
long time tc~ called the censor time. A second stress 
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Figure 1 Lifet ime densi ty  func-  
t ion for stress ratio ~b = ( - - - )  
0.30, ( - . - )  0.70, ( - - - )  0.925, 
( ) 1.00 and  ( . . . .  ) 1.05. 
Q = 250, r/ = 5, a R = 4000MPa ,  
R = 1 2 0 M P a s e c  -~. 

level a2 is chosen larger than the first, and the surviv- 
ing specimens are subject again to the stress history 
(Equation 17) at this new stress level as though they 
were virgin specimens. Again the specimens are 
unloaded after a suitably long time tc2. The process is 
repeated at a third stress level and so on. 

The critical factor is to increase sufficiently the 
stress level at each step to ensure that the effect of the 
previous stress history is negligible at the new stress 
level. In essence, this means that the value of the 
integral in Equation 4 for all past stress histories is 
insignificant compared with its value upon loading up 
to the newest stress level cr using the stress history of 
Equation 17. Note that Q must be very large for this 
phenomenon to occur. Using this stepwise procedure, 
the sample of fibres can be treated as essentially virgin 
at each new stress level. Moreover, the cumulative 
number of failures at the start of the steady-load 
portion of each stress level can be compared with the 
predicted number based on the experimentally deter- 
mined strength distribution. 

To determine a suitable stress level at each new step 
the fraction of initial failures is evaluated using the 
strength distribution of Equation 12. This number 
must be greater than the fraction of lifetime failures 
predicted using the lifetime distribution (Equation 19) 
at the time tc of censoring the experiment for the 
previous stress level. Calculation of this fraction 
requires an assumed value for the power-law exponent 

which must be no larger than the value of 
estimated eventually from the experiments. 

3. Experiments 
3.1. Background 
The experimental work consisted of both tension tests 
on single graphite fibres to determine their strength 
statistics, and creep-rupture tests on single graphite 
fibres at three stress levels to determine their lifetime 
statistics. The data were in turn used to establish 
estimates for the Weibull shape and scale parameters 



for both strength and lifetime as well as the power-law 
exponent Q. 

Hercules IM6 graphite fibres were used throughout 
the tests. These fibres were from the same spool (a 
12 000-fibre tow) as used in previous studies of seven- 
fibre microcomposites at our laboratory [5]. The fibres 
were nominally 5.5 #m in diameter and a gauge length 
of 5 cm was used for all tests. Hercules IM6 fibres 
have a modulus of elasticity of 280GPa, and the 
Weibull scale parameter for strength is typically about 
4000 MPa. The fibres were unsized in order to facili- 
tate separating individual fibres from the tow. All tests 
were performed at standard conditions (21 ° C, 50% 
r.h.). 

In the preliminary experiments the tabbing tech- 
niques and tension test procedures used were similar 
to those of Phoenix et al. [5]. Although satisfactory for 
tension tests, the paper and cyanoacrylate adhesive 
tabbing technique itself proved to be subject to creep 
rupture and time-dependent distortion and therefore 
required modification. The creep-rupture testing equip- 
ment developed by Wagner et al. [10] for testing 
Kevlar 49 fibres and later used by Wu et aL [11] was 
used during the preliminary experiments. However, 
additional isolation from dynamic overloads proved 
necessary for the graphite fibres because of the 
expected large inherent value of Q (about eight times 
that for Kevlar 49). For the experimental results 
presented here refined procedures were used, and it is 
the refinements that will be emphasized. 

3.2. Sample preparation 
The fibres were separated from the 12 000-fibre tow by 
placing a 50 cm section in a distilled water bath and 
agitating the water. The fibres were touched only at 
their ends, drawn out of the tow, and place on a 
Teflon-coated board. A total of 55 fibres 50 cm long 
were extracted from six different cross-sections of the 
tow. 

A specially designed vibroscope [12] was used to 
measure the diameter of a 5 cm section of each 50 cm 
fibre. The coefficient of variation along the length of 
the fibre was found to be about 4.0% in previous 
studies [5], so the 5 cm section was considered repre- 
sentative of the entire 50 cm length. 

Two metal tabs were glued on paper templates 
which established the 5cm gauge length. A 15 cm 
section of fibre under slight tension was placed across 
the gauge section on top of the metal tabs. A 5 cm 
length of cotton thread that extended outside the 
gauge section was placed on the tab coaxially with the 
fibre. The tabs were square in cross-section but with a 
V-shaped groove machined along the length to facili- 
tate alignment. They were designed so that when 
hanging vertically from the cotton thread their centre 
of gravity would be coaxial with the fibre. The cotton 

thread had negligible flexural stiffness and was unable 
to exert a bending moment on the hanging metal tab. 
A total of 110 specimens were prepared and assigned 
numbers in the sequence of preparation. 

The fibre and thread were glued to the metal tab 
using an epoxy blend of 60% Dow DER 732, 40% 
Dow DER 332, and Dow DEH 26 hardener. The 
epoxy was heated to about 50°C while mixing to 
lower the viscosity. The epoxy was cured at 100°C for 
4 h and then cooled slowly. 

The metal/epoxy tabs were not subject to the fail- 
ures afflicting the paper/cyanoacrylate tabs during 
preliminary creep-rupture tests. Examples of failures 
with paper/cyanoacrylate tabs were a fibre breaking 
well inside the tab due to debonding or voids in the 
glue, or a fibre breaking at the entrance to the tab due 
to curling of the tab with age. These types of failure 
were not observed with the metal/epoxy tabs. 

3.3. Tension tests  
A list of 110 random integers was generated in order 
to select specimens for the tension tests and the creep- 
rupture tests. 55 specimens were selected for the 
tension tests which were performed on an Instron 
Model 1130 constant-rate-of-displacement machine. 
The crosshead speed was 0.02 mm sec -I which pro- 
duced a loading rate of about 120MPasec -I. Each 
specimen was clamped by the cotton threads and the 
paper template was cut away. Load-displacement 
curves were generated which showed brittle behaviour 
and no evidence of debonding in the tabs, and the 
breaking strengths were calculated as the peak loads. 
Every effort was made to duplicate the damping situ- 
ation to be used in the creep-rupture tests to avoid any 
differences due to clamping effects. Five specimens 
were accidently destroyed in handling so that 50 suc- 
cessful tension tests were performed. 

From the vibroscope experiments, the mean dia- 
meter of the fibre specimens was found to be 5.5 #m 
with a c.v. (coefficient of variation, or standard devi- 
ation divided by the mean) of 4.7%. The failure stress 
for each fibre specimen was calculated using the cross- 
sectional area of the extracted fibre which was used to 
make that specimen. The results are plotted on Wei- 
bull probability paper (Fig. 2) using the maximum 
likelihood estimation (MLE) technique [13]. As shown, 
the MLE-derived Weibull distribution fits well to the 
50 data points. The estimates of the Weibull shape and 
scale parameters t/ and a R, were 4.6 and 4340 MPa, 
respectively, at a 5 cm gauge length. 

The basic statistics and estimates for the tension 
tests are shown in Table I. As mentioned earlier, 
considerable development was involved in arriving at 
a suitable tabbing technique, especially for the creep- 
rupture tests. For comparison purposes, Table I 
also shows earlier results using paper tabs with a 

T A B L E I Strength statistics for Hercules IM6 graphite fibres (5 cm gauge length) 

Tabbing technique Mean area Mean stress Scale Shape 
(/tm 2) + (e.v.) (MPa) + (c.v.) parameter (MPa) parameter 

Paper/cyanoacrylate [5] 24.2 (6.6) 3730 (25.7) 4099 4.3 
Metal/epoxy 24.9 (6.8) 3955 (25.2) 4340 4.6 
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Figure 2 Fibre strength plotted on Weibull 
probability coordinates. Gauge length = 
5cm, q = 4.6, a R = 4340MPa. 
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cyanoacrylate adhesive. The lower tails of the two 
distributions for the two techniques were about the 
same, but at higher failure stresses the paper tab 
system appeared to produce inferior strengths. 

3.4. Creep-rupture tests 
As mentioned, the creep-rupture apparatus (Fig. 3) 
was a modified version of the 25-station rack used by 
Wagner et al. [10] and later by Wu et al. [11]. In the 
original apparatus, the fibres were suspended verti- 
cally from top-mounted switches. Weights were placed 
on a sheet-metal lowering tray and then attached to 
the bot tom tabs of the fibres. The tray was then 
lowered by a motorized cable system, and the times to 
failure were recorded with a microcomputer-based 
system. 

Considerable modification to this equipment was 
required for testing graphite fibres. In particular, 
greatly improved vibration isolation and slower load- 
ing rates were necessary in order to measure the 
lifetime phenomena of interest. The basic apparatus 
was structurally stiffened and increased in mass to 
250 kg. The lowering tray was replaced with a massive 
Teflon-covered platform constructed of  plywood in a 
steel frame. The whole apparatus was mounted on a 
vibration isolation table consisting of a 650 kg granite 
slab and four low-pressure pneumatic springs. The 
resonant frequency of the system was approximately 
2 Hz, so that thread lengths for the tabs were selected 
to avoid resonance at this frequency. The apparatus 
was shielded from convective air currents in the room. 
The motor only operated while lowering the table and 

Fibre and weioht 

Mo 

Dust cover .~  

lSggure 3 Schematic diagram of creep-rupture apparatus. 
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the system seemed to be most free of vibration with the 
motor mounted on the granite slab. 

Preliminary experiments showed that contact bounce 
in the switches due to specimen failure could cause 
sufficient vibration to disturb neighbouring speci- 
mens. In consideration of the fact that fibre failures 
are widely spaced after the first few minutes of the test, 
the failure times were recorded manually through fre- 
quent visual checks of the experiment. This approach 
provided satisfactory resolution of the failure times. 

From the preliminary study mentioned in Section 
2.7, three stress ratios ~b = a/~R were chosen for the 
creep-rupture tests. These stress ratios were 0.925, 
1.00 and 1.05, and were based on aR = 4340 MPa. 

For the first stress ratio of 0.925 all 55 remaining 
fibre specimens were to be tested for creep rupture 
using specially tailored weights as in Wu et aI. [11]. In 
order to maximize the number of specimens hanging 
in the 25-station apparatus shortly after loading 
(avoiding the necessity of having more than one run of 
the experiment) all specimens were prestressed to 
0.925aR in the Instron tension test machine. From the 
strength distribution it was calculated that about 50% 
of the specimens would fail due to this pre-testing. 
This procedure was rather tedious and delicate, and 
seven specimens were accidentally destroyed during 
handling. Of the 48 remaining, 23 failed in this pre- 
testing, which is just short of the 50% expected. The 
remaining 25 survivors were placed in the creep- 
rupture apparatus. 

Upon loading to the stress ratio 0.925 (loading rate 
of 120 MPa sec ~) one of the 25 Specimens failed at the 
start (that is, its failure time was too short to resolve) 
and four failed in the creep rupture. The test was 
censored after 168 hours (one week), and the 20 sur- 
viving specimens were unloaded by raising the plat- 
form. 

Next, weights were prepared for loading the 20 
survivors at the stress ratio 1.00 and carefully attached 
to the bottom tabs with the top tabs remaining in 
position. Again the process was tedious and two speci- 
mens were destroyed by handling, leaving 18 for the 
creep-rupture test. One specimen failed on loading (or 
at a time too short to resolve) and four specimens 
failed in creep rupture. The experiment was censored 
after 72 h and the t 3 surviving specimens unloaded by 
raising the platform. 

Lastly, weights for loading at the stress ratio 1.05 
were prepared for the 13 survivors and attached as 
before. Two specimens were again destroyed by hand- 
ling, leaving 11 for the creep-rupture test. Three fail- 
ures occurred on loading, or at times too short to 
resolve, and two others failed in creep rupture up to 
the censor time of 336 h. Thus a total of six specimens 
survived all testing. 

4. Analysis for individual data sets 
4.1. Adjusted sample size for creep-rupture 

tests 
As explained in Section 2.8, by raising the load suffi- 
ciently at each step, the creep-rupture test at each 
stress level could be considered to be essentially equiv- 
alent to a test on a virgin sample of 48 specimens, 

though the full likelihood analysis presented later 
relaxes this assumption. For each stress level, the 
number of failures on loading could be calculated as 
the cumulative number of the original 48 that had 
failed up to that point, and the lifetime of creep- 
rupture failures could be measured from that point. 
Determining the fraction of failures on loading for 
each stage, however, was complicated by the fact that 
four handling failures had occurred as discussed 
previously. The appropriate procedure was to calcu- 
late an adjusted sample size for each stress level by 
multiplying the adjusted sample size for the previous 
stress level by the fraction of the creep-rupture survi- 
vors that were not destroyed in handling, and to take 
the closest integer. At the end of the creep-rupture test 
at the first stress level, 20 survived but two of these 
were destroyed during handling leaving 18, or the 
fraction 9/10. 

By this procedure, the adjusted sample size for the 
first stress ratio of 0.925 is 48. The adjusted sample 
size for the second stress ratio 1.00 is the closest inte- 
ger to 48 x (18/20) or 43. For the third stress ratio 
1.05, there were 13 creep-rupture survivors of the 
second stress level of which two were destroyed by 
handling, leaving 1 !. The adjusted sample size is the 
closest integer to 43 x (11/13) or 36. 

4.2. Actual and predicted failures on loading 
It is useful to compare the failures on loading calcu- 
lated from the creep-rupture experiments with those 
predicted from the tension test results discussed 
earlier. In this calculation it is necessary to take the 
handling failures into account by working with the 
adjusted sample sizes. At a stress ratio of 0.925 the 
predicted fraction of failures from the tension tests, 
using Equation 12, is 0.50 and from the above discuss- 
ion (23 + 1)/48 = 0.50 is calculated which agrees. At 
the stress ratio 1.00 the adjusted sample size in the 
creep-rupture test was 43 with 17 surviving in creep 
rupture to measurable times, so that the adjusted 
fraction of initial failures is (43 - 17)/43 = 0.60. 
This compares favourably with 0.63 from the tension 
tests as calculated using Equation 12. 

Lastly, at the stress ratio 1.05 the predicted fraction 
of initial failures from the tension tests is 0.71. The 
adjusted sample size is 36 and there were 11 specimens 
actually loaded in the creep-rupture apparatus with 
three of these failing at times too short to measure. 
The adjusted fraction of failures just after loading is 
[36 - (11 - 3)]/36 = 0.77, whereas the predicted 
fraction is 0.71. Observers of the experiment noted 
that only two of the three failures were obvious load- 
ing failures; the other one occurred at or possibly just 
after full loading. The possibility of a smaller fraction 
of initial failures (in closer agreement with the tension 
test results) is considered in a later analysis. The actual 
fraction (based on the adjusted sample size) and the 
predicted fraction (based on the tension test) of fail- 
ures on loading for the three stress levels are shown in 
Table II. Also shown is the actual fraction at the stress 
ratio 1.05 based on one less initial failure. 

In view of the uncertainty just mentioned, and the 
predicted ,behaviour of the failure rate (density) in 
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T A B L E  II Adjusted sample sizes and actual and predicted 
fraction of  failures on loading 

Stress ratio, Adjusted Actual Predicted 
= a/c~ R sample size fraction fraction 

0.925 48 0.50 0.50 
1.00 43 0.60 0.63 
1.05 36 0.77* 0.71 

*0.75 if based on one less loading failure and 0.72 if based on two 

less loading failures. 

Fig. 1, which for the stress ratio 1.05 is most elevated 
at the shorter times just after loading, the experimental 
results are quite reasonable. The deviations from the 
predictions are probably due to chance alone. Never- 
theless, later estimates from the results at the highest 
stress level do have increased uncertainty because of 
the smaller adjusted sample size and the smaller num- 
ber of survivors on test. 

4.3. Analysis of lifetime data 
The creep-rupture experiments began with a ramp 
loading for about 35 sec, requiring Equation 18 or 19 
as a model. Further study shows that if time is 
measured from t* = toQ/(Q + 1) then Equations ]8 
and 19 are exactly Weibull distributions for all t i> to. 
The time t* differs from to, the time of full loading, by 
the amount to/(Q + 1) which is almost negligible since 
Q is anticipated to be very large (>  200). In this case 
to/(Q + 1) is about 0.2see (far less than our actual 
resolution time discussed shortly). Note that to/ 
(Q + 1) is interpreted to be the time under constant 
stress a which would cause the same probability of  
failure as the ramp loading up to to = ~btR. 

As mentioned, the failure times were measured 
manually so that it was possible to resolve early fail- 
ures only to within about two seconds. This error in 
itself is considerably larger than the time shift to/ 
(Q + 1) above. Also the specimens had all seen a past 
stress history before being loaded in the creep-rupture 
experiment. Nevertheless, because of  the large antici- 
pated value of  Q it is quickly seen from Equation 4 that 
time spent at all previous stress levels is equivalent to 
a fraction of a second at the newest stress level (except 
for the highest stress level as noted shortly). 

Thus, in this first MLE analysis, the data were 
analysed one stress level at a time using the Weibull 
distribution (Equation 9) where lifetime is measured 
conceptually from the instant t*. The failures on load- 
ing were actually assigned to an interval (0, t*) where 
tff is a constant to be specified, but lifetime failures 
were assigned their exact failure times. (These failure 
times, which were all at least a few minutes, were 
actually measured from the time point to, but the 
difference is insignificant as it is much less than the 
resolution time.) The survivors at the time of censor- 
ing t c were assigned to the interval (tc, oe). In prin- 
ciple t* would be taken as to/(Q + 1), but in reality 
some "initial" failures were really failures which had 
lifetimes too short to detect, so t* = 2.0see was 
chosen more in line with the resolution time of the 
experiment. The MLE procedure that was used could 
accommodate interval and censored data of this type 
[13]. In all cases adjusted sample sizes were used, as 

T A B L E  I I I  Lifetime parameter estimates at each stress level 
with the resolution time t~' = 2.0 sec 

Stress Fraction o f  Shape Scale Power-law 
ratio, loading parameter,  parameter,  exponent~,  
¢ = a /aR failures /] [~ (see) 

1.05 28/36 0.0t3 5.14 x l0 -~4 354 
27/36* 0.019 9.21 x 10 -g 236 

1.00 26/43 0.022 7.30 × 101 212 
0.925 24/48 0.019 8.00 x 108 245 

* Based on assigning one failure to the interval (2 sec, 4 sec). 
t Based on Equation 13. 

shown in Table II. The Weibull parameters for the 
three stress levels are shown in Table III together with 
power-law exponent values Q as calculated from 
Equation 13. 

The predicted value of ~ seemed inordinately large 
at the 1.05 stress ratio and/3 seemed small. The data 
were reanalysed from the viewpoint that one of the 
initial failures at this stress ratio may have occurred a 
second or two after the ramp loading was completed. 
It was also determined, using Equation 4, that the 
effect of  loading over time at the previous stress ratio 
1.00 actually was equivalent to about 2 sec of  time at 
the stress ratio 1.05 (assuming Q = 250). The MLE 
analysis was repeated and one of  the 28 "initial" 
failures was assigned to a time interval (2 see, 4 sec) 
with the remaining 27 assigned to the interval (0 sec, 
2 sec). The results of  this second analysis are also 
shown in Table III. With this approach, the values of  
both the Weibult shape and scale parameters are more 
consistent, in the context of the model, with the results 
from the two lower stress levels and the tension test. 

Fig. 4 shows the lifetime data at the three stress 
levels together with the MLE-fitted Weibull distribu- 
tions. Also shown are the fractions of initial failures 
and the fractions surviving at the time of censoring. 
The adjusted sample sizes were used for all plotting 
and only the second of  the two analyses at the 1.05 
stress ratio is shown. 

To assess the effect of  the choice of the resolution 
time constant t* on the results, the analysis was 
repeated for t* values of  0.5 and 5.0see. The corre- 
sponding intervals for the 28th failure at the 1.05 
stress ratio are (0.5 sec, 2.5 sec) and (5.0 sec, 7.0 sec). 
The results are shown in Table IV where again 
Equation 13 was used to calculate ~. Increasing t~" has 
the effect of  diminishing the estimated value of  Q. 

The effect of  stress level on the Weibull scale 

T A B L E  IV Lifetime parameter estimates with the resolution 
time t* = 0.5 and 5.0 sec 

Resolution Stress Shape Scale Power-law 
time, t* (see) ratio, parameter, parameter,  exponent1, 

0.5 1.05" 0.018 3.76 × 10 -9 262 
1.00 0.019 3.06 × t01 237 
0.925 0.017 1.78 × 109 271 

5.0 1.05" 0.021 7.52 × 10 -7 219 
1.00 0.023 1.30 × l0 s 200 
0.925 0.020 4.39 x 108 227 

* Based on assigning one failure to the interval (t* see, t* + 2 sec). 
t Based on Equation l 3. 
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Figure 4 Fibre lifetimes at stress 
ratio ~b = (+) 0.925, (x) 1.00 
and (~tr) t.05 on Weibull prob- 
ability coordinates. 

parameter for lifetime is shown in Fig. 5 which uses 
log-log coordinates. On this scaling, the slope of  the 
line fitted to the parameter values is -1/Q.  The esti- 
mates for Q are 326, 294 and 272 for resolution times 
tg of 0.5, 2.0 and 5.0 sec intervals, respectively. The 
straight line is a least-squares fit corresponding to the 
t* = 2.0 sec data (with the above-mentioned interval 
adjustment at ~b = 1.05). 

Note in Fig. 5 that the horizontal position of  the 
value for the Weibull scale parameter for lifetime, to, 
at a given stress level is strongly influenced by the 
fraction of initial failures at that stress level. This is 
apparent from Fig. 4, where one can appreciate that 
an unusually high number of  initial failures will tend 
to raise the fitted line, thereby reducing the estimate of 

-20 
4700 

4500 

4300 

4100 

3900 ~ 
1 0 - 9  

tn [time 
-10 0 

I = 1 

t~, and vice versa. As compared with the predicted 
fractions from the strength tests, the actual fractions 
listed in Table II are consistent with t~ being to the 
right of  the line in Fig. 5 at o" = 4340MPa (~b = 1.00) 
and being to the left at a = 4557 MPa (~b = 1.05), 
thus causing curvature. An improved estimating pro- 
cedure which takes into account both the strength 
results and the lifetime results at the same time is 
presented in the next section. 

5.  F u l l  l i k e l i h o o d  a n a l y s i s  
5.1. Likel ihood funct ion 
The analysis in Section 4 is based on well-established 
maximum likelihood techniques for fitting the Weibull 
distribution, applied separately to each of  the stages of  

(sec)] 
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l 1 ~ I .t 8.45 

~ ~ / p  = 294 

x÷ O ~  8.3 
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Figure 5 Weibull scale parameter for lifetime against stress level on power-law coordinates for l* = (0) 0.5 sec, (+) 2.0 sec (Q = 294) and 
(x) 5.0 sec. 
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the experiment. One advantage of analysing the data 
this way is that by comparing the results obtained 
from the different stages of the experiment, a check is 
provided on the suitability of the model being fitted. 
Nevertheless, if the validity of the model (Equation 4) 
is assumed, then it is possible to obtain more precise 
estimates of the parameters (including confidence 
intervals) by a full likelihood analysis, in which the 
whole set of data is treated as a single entity and a 
likelihood function is constructed to represent the 
whole experiment. 

First, Equation 4 is written using q and aR defined 
by Equations 13 and 14 as follows, 

F(t;  0-) 
l,,/(0 + 1) ) 

= 1 - e x p { - [ R ( e + l ) f ~ 0 - ( u ) O d u J  al~"~ 

(25) 

For a fibre which is known to have failed at time tF, 
the contribution to the likelihood function is 

f u r ;  0-) = d[F(tF; a)]/dtF (26) 

In our experiments, the exact time to failure for some 
fibres is unknown and only the fact that the failure 
occurred between times tFl and tr2 is recorded. This 
includes fibres which were still surviving at the end of 
the experiment, and those which were accidentally lost 
during the course of the experiment. In these cases 
tw = + oo. The contribution to the likelihood is 

F(tF2; 0-) -- F(tF1; a) (27) 

The full likelihood is constructed by multiplying 
together Equations 26 and 27 for each of the 98 fibres 
for which data are available (i.e. including both the 
initial tension tests and the lifetime tests, but excluding 
the five tension test fibres and the seven lifetime test 
fibres which were broken before any testing could be 
performed). This likelihood function depends on the 
three parameters ae ,  rt and ~, and is therefore denoted 

Likelihood function = L(aR,  it, Q) (28) 

In order to evaluate Equation 25, the parts of the 
experiment during which the fibres were unloaded 
were ignored, since no fibre failures (other than acci- 
dental breaks) occurred during such periods. This 
simplified the analysis, and the assumed stress history 
0-@) was 

0 < u < ~rl/R 

( a f f R )  < u < tl 

R u  

or1 + R ( u  - tcl)  

0- 2 

a2 + R ( u  - tc2) 

0- 3 

0-(u) = 

tl < u < [t 1 

+ (ff 2 -- ~ I ) /R]  

It1 + (~2 - ~ I ) / R ]  

< u < t  2 

t 2 < u < [ t  2 

+ (0-3 - 0-O/R] 

[t2 + (0-~ - 0-2)/R] 

< u < o o  
(29) 

21 60 

with corresponding values for the integral in Equation 
25, respectively on each of the above time intervals, 
given by 

P(R°~t°+l)/(O + 1) 

af+I/[R(0 + 1)] + a~'[t - (a,/R)] 

0-~[t, - (0-1/R)1 

+ [~rl + R ( t  - t l)]o+7[R(e + 1)] 

0-f[tl - (0-1/R)1 

+ a ~ { t  - t, - ( ~ 2 / R ) [ e / ( e  + I)1 

+ (0-1/R)} 

f°°'(u)~du = ~  a f [ t l -  (o'l/R)l 

+ ~ { t ~  - tl - [(0-2 - ~ , ) / R ] }  

+ {0-2 + R ( t  - t2)}~+l/[R(e + 1)] 

a f [ t l  - (~I tR) ]  

+ 0-~[t2 -- tl - (a2 -- 0-1)/R] 

+ ~ { t  - t2 - ( a 3 / R ) [ e / ( e  + 1)] 

+ ( . ~ / R ) }  

(30) 

where tl = tcl + (0-I/R) and t2 = t1 + [(a2 - a l ) /  
R] + tc2 and with tcl and tc2 the censor times defined 
earlier. These values may be substituted into Equation 
25 to give an explicit formula for the required distribu- 
tion function. 

In the case of fibres which fail during the initial 
loading stage (i.e. t < a l / R ) ,  the distribution of fail- 
ure time is given by 

F(t;  0-) = 1 - exp [ - - ( R t / a R )  ~] (31) 

or, equivalently, the distribution of failure stress 
0- = R t  is given by 

F*(a; aR, t/) = 1 - exp [ - (a /aR)  '7] (32) 

with density 

f* (a ;  aR, 0) = (tl/aR)(cr/aR) ~ I  exp [ - - (a /aR)  ~] 

(33) 

consistent with Equation 12. For these fibres it makes 
no difference whether Equations 26 and 31 are used or 
Equation 33 is used, but to be consistent with the 
method used earlier for the analysis of tension test 
data, Equation 33 is used. Thus Equation 33 applies 
for the fibres of the initial tension tests. For all these 
fibres the exact failure stresses were known so that 
intervals were not needed. 

In the case of the fibres which failed during the 
life-testing stage of the experiment, lower and upper 
bounds were set for the individual failure times tw and 
tF2, SO as to apply Equation 27. Coding the data in this 
way enabled testing the sensitivity of the results to 
certain data items, particularly for those fibres which 
failed on loading at each stage, by varying tF2 to 
represent the different guesses of the upper bound on 
failure time (corresponding essentially to t* in Section 
4.3). For failures during the constant-load parts of the 
experiments the intervals were set to be very narrow 



( _  0.1% of  the actual failure times). A sensitivity 
study showed that varying the width about that order 
had absolutely no effect on the results. 

5.2. Numer ica l  p r o c e d u r e s  
The likelihood function was maximized using a vari- 
ant on the standard Newton-Raphson algorithm. 
More precisely, the log likelihood function was written 
as a function of three parameters log aR, log r / and  
log Q, the logarithmic transformation on the par- 
ameters being made because, knowing the magnitudes 
of the numbers involved, this seemed appropriate to 
guarantee numerical stability. The precise algorithm 
used was developed specifically for maximum likeli- 
hood problems, though in no case was there any 
serious difficulty in finding the maximum, so a pack- 
aged Newton or quasi-Newton routine is expected to 
work just as well. 

As well as giving parameter estimates, it is desirable 
to obtain confidence intervals. The following two 
methods were used for this, both of  them standard 
procedures in statistical analysis of  this nature. 

(i) Wald's method. In this method an approximate 
95% confidence interval for a parameter is given by 

parameter estimate _ 1.96 

x (standard error of  estimate) (34) 

where the factor 1.96 is obtained from tables of  the 
normal distribution and the standard error of  the ith 
parameter is the square root of  the ith diagonal ele- 
ment of  the inverse of  the observed information 
matrix. The observed information matrix is the matrix 
of second-order derivatives of  minus the log likeli- 
hood function, evaluated at the maximum likelihood 
estimates. In our case a logarithmic transformation 
was applied to the original parameters, so the con- 
fidence intervals are calculated on a logarithmic scale, 
and then transformed back to produce confidence 
intervals for the original parameters. 

(ii) Likelihood ratio method. This method is more 
computationally intensive than Wald's method, but 
gives better results when (as here) thetikelihood func- 
tion is highly skewed. To illustrate its application, 
suppose ~ in Equation 28 is the parameter of interest. 
For  each Q, define a profile likelihood by maximizing 
with respect to aR and ~/and conditionally on 6, i.e. 

L*(e) = max L(aR, ~1, Q) (35) 
aR,tl 

Suppose L* is maximized at ~ = 0, the maximum 
likelihood estimate of  6. An approximate 95% con- 

fidence interval is the set of  Q for which 

2 log [L*(O)/L*(Q)] < 3.84 (36) 

where 3.84 is the upper 5% point of the Z 2 distribu- 
tion, which is the relevant asymptotic distribution for 
the quantity on the left-hand side of Equation 36. 

The need for an additional maximization in 
Equation 35 makes the second method more com- 
putationally intensive than Wald's method, which 
requires only one maximization in total, but in the 
present case the two methods give virtually identical 
results if Equation 35 is replaced by 

L** = L(gR, 0, 6), (37) 

in which aR and 0 are the overall maximum likelihood 
estimates ofo- R and t/. In other words, to define L** the 
maximization in Equation 35 is performed only once 
(at 6 = 0) instead of  separately each time Equation 35 
is evaluated. 

5.3. Resul t s  
For  the initial tensile strength data maximum likeli- 
hood estimates of 8R = 4339 and 0 = 4.61 were 
found, agreeing with the earlier analysis, and the 
corresponding confidence intervals were (4080, 4620) 
and (3.8, 6.0) computed by Wald's method on a log- 
arithmic scale, as described in Section 5.2. 

For  the analysis of  the full data (including the initial 
tension tests) we considered four cases corresponding 
to different values of the resolution time t*. For  Case 
I we took t* = 0sec, meaning that failures with 
unknown times associated with the ramp portion of 
the loading in Equation 29 were assigned exactly to 
the time intervals of  their respective ramp portions. 
For Case II we took to* = 0.5sec (except for one 
specimen on the last ramp loading where we took 
to* = 4 sec for reasons mentioned earlier) to reflect the 
fact that specimens that failed during the ramp load- 
ing could actually have hung under steady load for up 
to one-half second before failing. Case III was similar 
to the Case II except that to* was taken as 2 sec (except 
again for one at 4sec). For  Case IV we took 
to* = 5 sec. In this way we could determine the sen- 
sitivity of  the estimates to this resolution time to*. 
Table V lists the estimates of the respective Weibull 
shape and scale parameters for strength and the 
power-law exponent Q. Table V also lists an estimate 
for fl, the lifetime shape parameter as calculated from 

and 0 using Equation 13. (The Weibull shape par- 
ameter for lifetime t~ may be calculated using 
Equations 15 and 16.) The most realistic values we 

T A B L E  V Parameter estimates for the model under a full likelihood analysis assuming various values for t* 

Case Resolution Strength shape Strength scale Life shape Power-law 
time, t* (sec) parameter, 0 parameter, parametert ,  fl exponent, 0 

6- R (MPa) 

I 0 4.69 4312 0.0109 428 
II 0.5* 4.67 4319 0.0128 365 
III 2.0* 4.66 4322 0.0137 340 
IV 5.0 4.66 4326 0.0145 321 

*One specimen assigned t* = 4 sec during last ramp load. 
t Based on Equation 13. 
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Figure 6 Plot of fitted theoretical Wei- 
bull distribution for strength against the 
Kaplan-Meier empirical distribution 
function. 

believe are those of Case III with t* = 2 sec. Clearly 
the estimate of e (and thus /~ also) is significantly 
affected by the choice of t*. 

Using the previously described methods we also 
calculated 95% confidence intervals for the three par- 
ameters. For Case III, with our best estimate of 
to* = 2.0 sec, the confidence intervals for the respect- 
ive parameters ~R, 0, ~ were computed to be (4120, 
4535), (3.8, 5.8) and (232, 501) using Wald's method. 
The confidence intervals for 6R and ~ are slightly 
narrower than those from just the strength results, as 
expected in view of the greater quantity of data being 
analysed. On the other hand, the confidence interval 
for ~ obtained from Equation 36 is (250, 555). The 
difference between this and the confidence interval just 
quoted for Wald's method is explained by the highly 
skewed shape of the profile likelihood L*(Q)/L*(O), 
which is an indication that the likelihood ratio method 
is superior to Wald's method. For the other cases the 
confidence intervals were virtually the same for 0 and 
~R but for 0 were (316, 694), (268, 595), and (235, 520) 
respectively for Cases I, II and IV using the likelihood 
ratio method. Despite the sensitivity of 0 to the resol- 
ution time t* there is considerable overlap of the 
above confidence intervals for ~. Nevertheless the 
analysis does suggest that the correct value for t* 
deserves attention in any future experiments. 

5.4. G o o d n e s s  of fit of the  mode l  
An obvious question raised by the analysis, especially 
by the apparent discrepancies in ~ over different stress 
levels (Tables II and III, Fig. 5), is how well the model 
fits the data, i.e. whether the functional form of 
Equation 25 is adequate to describe the data. We have 
investigated this by probability plotting, a technique 
that will now be described. 

Let us first ignore the fact that there are some 
censored observations owing to fibres being broken in 
handling at various stages of the experiment. Equation 
25 tells us, for any fixed t, what is the probability 
(under the assumed model) that a fibre fails before 
time t. However, for the particular loading pattern 
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o-(u) used in the experiment, we can estimate the func- 
tion F(t; ~r) by the empirical distribution function, 
given by 

F~ = i/n Y~ <~ t <~ Y~+~ (38) 

where Yl < I12 < ' " " < Yn are the n ordered failure 
times of the experiment. A plot of the theoretical 
distribution F(t; a) against the empirical distribution 
function F, (t) therefore provides an indication of the 
fit of the model. In practice, since the jumps of Fn 
occur at t = Y~, I12 . . . . .  Y,, the plot is evaluated 
only at those points. 

In the case of censored data it is necessary to modify 
the empirical distribution function to take account of 
the censoring. The appropriate modification is the 
Kaplan-Meier (also called Product Limit) estimator, 
given by 

F,(t) = t - 1] (1 - 4./nj) (39) 
j:9<t 

where tj is the j t h  observed failure time, nj is the 
number of current (uncensored) survivors at time tj, 
and ~ is the number of observed failures at time tj. 
(See Lawless [14].) 

For our experimental data, then, the fitted theor- 
etical distribution function was plotted against the 
empirical distribution function defined by the Kaplan- 
Meier estimator. This was done separately for the two 
experiments, i.e. the tensile testing experiment (using 
Equation 32) where all the fibres were stressed to 
failure, and the lifetime experiment (using Equation 
25 with Equations 29 and 30 and including those 
fibres which failed during the initial loading). The 
model parameter values ~ = 340, 0 = 4.66 and ~-R = 
4322 MPa were used in each case, and in cases where 
the failure time was not known exactly but only up to 
some interval, the midpoint of the interval was used. 

Figs 6 and 7 show the resulting plots for the tensile 
experiment and the lifetime experiment, respectively. 
If  the model is a perfect fit, then the points of the plot 
should lie very close to the straight line drawn. In Fig. 
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Figure 7 Plot of fitted theoretical life- 
time distribution with toad steps against 
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6 there is some discrepancy (plotting points below the 
theoretical line in the second quarter of the data, and 
above in the third quarter) but the deviation is well 
within the confidence limits of the Kolmogorov- 
Smirnov test. In Fig. 7, the plot stops at the point 
(0.822, 0.785) which corresponds to the end of the 
experiment (a few fibres remain unbroken), but the 
maximum deviation is again insignificant and in fact 
smaller than in Fig. 6, which corresponds to the 
WeibuU fit to the tensile strength data. 

The conclusion is that there is no evidence in the 
data to contradict the fitted model and that the uncer- 
tainty in a few of the observations, although affecting 
the estimate of ~, does not in fact make much differ- 
ence to the fitted model. 

6. Conclusions 
With proper care in experimental technique and the 
use of the appropriate statistical model and analysis 
procedures, it is possible to measure the creep-rupture 
performance of graphite fibres. Pre-testing of the 
fibres and the stepwise procedure for application of 
the load proved successful in providing significant 
information from a relatively small number of fibre 
specimens - about one-third the number that would 
have been required by conventional procedures. This 
saving is significant in view of the cost and tedium of 
preparing samples and the risk of introducing extrane- 
ous effects when preparing and testing specimens in 
groups. 

From an overall view of the results it appears that, 
at ambient conditions (21 ° C, 50% r.h.), the lifetime of 
single Hercules IM6 graphite fibres follows a Weibull 
distribution with a shape parameter value of about 
0.016, a value which is about one-tenth that observed 
for Kevlar 49 fibres [10, 11]. This corresponds to a 
huge coefficient of variation of about 5000%. The 
power-law exponent Q relating lifetime to load level 
(Equation 10) is about 300 but may be as low as 250. 
In future experiments it would be desirable to improve 
the time resolution of the shortest times, and in the 
step-up approach to space the stress levels further 

apart to reduce memory effects at the shortest times. 
It would also be desirable to increase the sample size, 
and to run separate experiments at each stress level. 

Finally, in the molecular model described in Section 
2.1, Equation 7 and the approximation U0 = 0.40U0 
are used to calculate an activation energy U0 of about 
440 kcal mol-~ (1840 kJ mol-~) corresponding to Q = 
300. This value is about five times the energy usually 
associated with scission of a single C-C bond, which 
is the critical bonding in graphite. Even ~ = 200 
yields U0 = 296kcalmol i (1240kJmol-~). A poss- 
ible reason is that, because of the strong lateral coup- 
ling between atoms in graphite fibres (C-C bonds 
instead of the weaker hydrogen bonds and Van der 
Waals forces typical of bonding in polymeric fibres), 
cooperative coupling between bonds during failure 
actually occurs, so that several simultaneous C-C 
bond failures are needed in the crack initiation 
process. This would also lead to an apparent increase 
in the activation energy U0 in the model of Phoenix 
and Tierney [7]. 
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